
Eurographics/ IEEE-VGTC Symposium on Visualization 2009
H.-C. Hege, I. Hotz, and T. Munzner
(Guest Editors)

Volume 28 (2009), Number 3

Semi-Automatic Time-Series Transfer Functions via

Temporal Clustering and Sequencing

J. L. Woodring and H.-W. Shen

Ohio State University, USA

Abstract

When creating transfer functions for time-varying data, it is not clear what range of values to use for classification,

as data value ranges and distributions change over time. In order to generate time-varying transfer functions, we

search the data for classes that have similar behavior over time, assuming that data points that behave similarly

belong to the same feature. We utilize a method we call temporal clustering and sequencing to find dynamic

features in value space and create a corresponding transfer function. First, clustering finds groups of data points

that have the same value space activity over time. Then, sequencing derives a progression of clusters over time,

creating chains that follow value distribution changes. Finally, the cluster sequences are used to create transfer

functions, as sequences describe the value range distributions over time in a data set.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Applications—

1. Introduction

For time-varying data, it can be unclear how to create a trans-
fer function [Lev88] for classification [Ma03]. Most transfer
function implementations have the user generate the map-
ping. This assumes that the user knows a priori the dynamic
value ranges. With lack of foreknowledge, a user generated
classification may not accurately visualize his or her time-
varying data, except through trial and error. It is possible
that a conservative static classification map will fail to visu-
alize anything after time progresses and values move out of
the mapped range. Conversely, if the mapped value ranges
are wide, the visualization may become too cluttered. Also,
there is tedium in creating transfer functions for every single
time step to get around the aforementioned problems.

In Figure 1 in the upper left image, we have data visu-
alized with a static transfer function. If we use the same
transfer function for a time later in the series, we get the
image that is in the upper right. It appears that the visual-
ized feature is dissipating over time. In the lower two im-
ages, we use transfer functions created through analysis of
the time-varying data, applied to the same two time steps.
This transfer function is optimized to map the value ranges
that correspond to similar temporal activity in the data. The
feature doesn’t dissipate, rather we detect that the values cor-

responding to the visualized feature shift in downward in
value space and we alter the map to visualize the new range.

In order to support the traditional visualization pipeline,
we seek to semi-automatically generate transfer functions
for time-varying data. The reason for this is to solve the pre-
viously stated problems of manual time-series transfer func-
tion creation. Our premise to generate transfer functions is
that we can analyze the time-varying data to find points that
share similar value activity. We use this information to nar-
row the transfer function map into these ranges of interest
over time. Our hypothesis is that data points that behave sim-
ilarly at a window in time belong to the same feature, and
thus are the same class of data. This derived information can
be used to create a time-series transfer function. Included
in the supplemental electronic material are videos showing
time-series animations using transfer functions generated by
our method.

In the following, we outline the paper organization. Sec-
tion 2 describes the related work in transfer functions and
time-varying visualization. Section 3 explains our method-
ology of finding sequences, used for classification of time-
varying data. Section 4 describes how sequences are used to
generate of transfer functions for visualization. We conclude
with Section 5.

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and

350 Main Street, Malden, MA 02148, USA.



J. Woodring & H.-W. Shen / Semi-Automatic Time-Series Transfer Functions via Temporal Clustering and Sequencing

Figure 1: A combustion data set of two time steps, left to

right, with different transfer functions applied to it. The top

images use a single static transfer function, and the feature

appears to vanish over time. The bottom images use a dy-

namic transfer function created through time-series analy-

sis.

2. Related Work

Levoy first described the use of transfer functions for vi-
sualization of volume data [Lev88]. The following authors
use methods of analysis to construct transfer functions. He
et al. described a method for genetic selection of trans-
fer functions to find an optimal rendering from user input
[HHKP96]. Bajaj et al. allow the user to search the data pa-
rameter space for isosurface values, which in turn can be
used to generate transfer functions [BPS]. Kindlmann and
Durkin used histogram volumes to find boundaries between
materials [KD98]. Kniss et al. provided methods to allow the
user to manipulate transfer functions in higher dimensional
data space in order to locate surfaces and features [KKH01].
Petersch et al. performed real time opacity adjustment for
visualization of ultrasound imagery by searching for inter-
faces, taking point-of-view into consideration [PHHH05].

The generation of transfer functions for time-varying data
has been attempted with various different methods [Ma03].
Jankun-Kelly and Ma generate static transfer functions for
time-varying data by merging several transfer functions over
time [JKM01]. Tzeng et al. and Akiba et al. generate dy-
namic transfer functions using the global histogram as it
evolves over time. Tzeng [TM05] uses neural network tech-
niques to adapt the transfer function over time from trained
transfer function keyframes. Akiba [AFM06] uses time his-

togram [KBH04, DMG∗04] quantization to create equiva-
lence classes over time to track value populations.

Data value activity has been used in the classification of
time-varying data. van Wijk clustered time-series activity to
find similar temporal patterns [vWvS99]. Fang et al. used
time activity to segment medical data, assuming that data
points that behave similarly over time are part of the same
tissue [FMHC07]. Woodring and Shen [WS09] use wavelets
to filter time-varying data into several time scales and clas-
sifies data by clustering the entire time series by time scale.
Lee and Shen [LS09] visualize time-varying data using the
dynamic time warping distance to estimate when an activity
signature exists. Wang et al. [WYM] use multi-dimensional
histograms to cluster time-varying data based on similar in-
formation entropy. Temporal value activity relates our work
in that it is the foundational basis for how we find groups or
features of similarly behaving data points. Similar to these
past works, we treat features or classes in our data as groups
of points that behave similarly in value over time.

Feature tracking is used in time-varying visualization as
well. Silver and Wang have used temporal volume overlap
to track volume objects over time [SW97]. Ji and Shen treat
3D time-varying data as a 4D dimensional field, and per-
form high-dimensional isosurfacing and slicing to track iso-
surfaces over time [JSW]. Reinders et al. use methods of fea-
ture extraction and path prediction to track classified features
over time [RPS01, PVHL03]. The work in feature tracking
is significant in our work as the concepts continuation, cre-
ation, termination, merging, and splitting, and the sequence
of events influenced our work in graph and sequence genera-
tion. The features that we extract are “events” on a time line
per time step, and we sequence them together into a contin-
ual chain of events. The sequences in turn are used to create
a time-series transfer functions.

3. Temporal Clustering and Sequencing

Figure 2: The process of temporal sequencing to create a

transfer function.

Our method of generating time-series transfer functions
utilizes a semi-automatic process that we call temporal clus-

tering and sequencing. The method attempts to generate
a classification for a time series data set by identifying
groups of points that change in value similarly [FMHC07,

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



J. Woodring & H.-W. Shen / Semi-Automatic Time-Series Transfer Functions via Temporal Clustering and Sequencing

vWvS99,WS09] and creating sequences of groups over time
[RPS01, PVHL03]. In Figure 2, we show a diagram of the
process. Below, we show an outline of the process, and the
user interaction required per step.

1. Process: Generate activity clusters per time step

Input: time-series data set

User Parameter: k, w

Output: k clusters of points per time step

The user inputs their time-series data into a clustering al-
gorithm. The clustering will find k activity clusters (fea-
tures) per time step, where k is a user input. k is roughly
equivalent to the number of transfer functions or clas-
sifications that will be generated. w, also a user input,
governs the time window (vector length) for clustering.
The output is clusters of data points (features) that be-
have similarly in value space over a time window w at a
particular point in time.

2. Process: Generate sequences from clusters

Input: k clusters of points per time step

User Parameter: γ
Output: cluster graph and n sequences of clusters

The sequencing process takes the clusters (features) gen-
erated by step 1 and creates a graph of clusters. Clusters
are nodes in the graph connected by edges to the clusters
in the previous and next time steps. Edges are a probabil-
ity estimate that one feature (cluster) is the same feature
in the next time step, but with a slight change or evolu-
tion. γ is a user input which culls low probability edges
from the graph. A find-all-paths algorithm extracts n se-
quences from the culled graph, such that one sequence
represents a feature evolving over time.

3. Process: Visualize the process

Input: cluster graph and n sequences of clusters

User Parameter: selection of a sequence of clusters

Output: sequence of clusters

The graph and sequences generated in step 2 are shown
to the user in a visualization interface. The graph shows
information about the clusters after edge culling by pa-
rameter γ . The n resulting sequences are also shown with
the information about the sequences. A user browses the
data from this interface and picks a sequence to be used
for generating a transfer function.

4. Process: Generate a transfer function

Input: sequence of clusters

User Parameter: transfer function type, optional initial

color/opacity map

Output: time-series transfer function

The sequence the user picks in step 3 is used as input to
the transfer function generation. A sequence describes a
class of data that evolves over time. The information con-
tained in a sequence is used to generate a time-varying
transfer function of the user’s choice. The user can op-
tionally input an initial color/opacity map to visualize a
feature that is automatically updated over time to create a
temporally coherent transfer function.

3.1. Windowed Time Activity Curve Clustering

To find features per time step, data points are grouped to-
gether if they exhibit the same value activity in a local tem-
poral neighborhood. We assume that points that have the
same value and change in value over time belong to the
same phenomenon or feature. A common way to repre-
sent the change over time is the time activity curve (TAC)
[FMHC07]. It is a vector representation of a data point that
has t elements ordered by time, representing the values of a
data point over time. TACs can also be thought of graphi-
cally as a plot of time vs. value for a data point, as in Figure
3.

To group or cluster data points by similar activity, we use
parallelized k-means [HW79] clustering on the input time-
varying data set that has been transformed to TAC vector
representation. The clusters of TAC vectors describe data
points that have similar value activity over time. We perform
clustering for each time step, creating k classes that behave
similarly for that time step. We record the histograms of the
TAC data in the time window and the spatial extent of each
cluster, which is used later in the sequencing and transfer
function generation.

Figure 3: Four graphed time activity curves (TAC) for four

data points. The 1st, 3rd, and 4th data points have similar

temporal activity in a time window, and would be in one

cluster for that time window.

Instead of classifying data points by their entire time se-
quence, we cluster per time step and window the TAC vec-
tors, like in Figure 3. A window kernel of length w is used,
when clustering a time step t. Therefore, we only clus-
ter the points that have similar activity in a local tempo-
ral window w. In previous work, temporal activity classes
are defined using the entire time sequence for TAC vec-
tors [FMHC07, vWvS99, WS09], which is adequate for spa-
tially static features. This is a problem for data that have fea-
tures that move in space. If we use the entire time sequence
to cluster data points, a point in space can only belong to
one classified feature, thus features become spatially static.
By windowing, a point in space can then belong to multiple
features (clusters) over time, as a feature moves in space. For
the window kernel in our implementation, we used the box
kernel, as there is an unnoticeable difference between a box
and a Gaussian kernel.

To follow the evolution of clusters over time in the next

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



J. Woodring & H.-W. Shen / Semi-Automatic Time-Series Transfer Functions via Temporal Clustering and Sequencing

section, we need to have clusters that are relatively similar
over time, or temporally continuous. If clusters vary signifi-
cantly over time, the sequencing process will not be able to
match clusters very well. Additionally, the generated transfer
functions will be visually discontinuous, because value dis-
tributions vary wildly over a sequence. In in our work, hav-
ing k that is too high leads to over-fitting and it may lead to
temporally discontinuous clusters. Choosing the right k has
perpetually been a problem, and there are no known good so-
lutions to finding k. Ultimately, we left it as a user decision,
as k is roughly proportional to the number of independent
transfer functions (features) that are extracted by the pro-
cess. The final number of possible transfer functions how-
ever is greater than or equal to k, depending on how many
sequences merge or split in the sequencing process. In our
tests, we picked k ranging from 2 to 4.

The window w can have an impact of the temporal con-
tinuity of clusters if the value activity ranges are very close
together, overlap, or if there is over-fitting. To help k-means
to disambiguate classes, the length of the kernel is increased,
thereby increasing the feature vector. A length of 5 (neigh-
borhood of 2 time steps) was adequate in most cases to sep-
arate data for the data sets we used. For one particular case,
the argon bubble data in Figure 5, we extended the length of
the kernel to 7, due to overlapping values in activity, to result
in temporally continuous clusters. The optimal length of a w

and size of k is ultimately data dependent, and further study
would be needed to algorithmically determine w and k. Po-
tentially, we can add more information to the feature vector
(TAC) to allow k to increase, and shorten w.

3.2. Cluster Sequencing

The second step in our process is the creation of sequences
from the clusters found per time step. We do this to follow
the evolution of a feature or cluster over time. To link clus-
ters into a sequence, we assume that the change in value
distribution of a cluster from one time step to the next is
a gradual change. For a cluster at time step t, we assume
there is one or more near matching clusters (though there
is the possibility of dispersion or merging) in the next set
of clusters at t + 1. If a cluster in t is similar to a cluster
in t + 1, we link them together as being a sequence of clus-
ters [RPS01, PVHL03], or the evolution of a feature over
time.

Using these assumptions, we create a directed graph that
describes relationship of clusters over time. An abstract ex-
ample of the graph can be seen in Figure 4. Each node
in the graph is one cluster generated by the time activity
clustering process. A node in the graph is connected by an
edge to all of the nodes forward and backward one step in
time. A strictly forward or backward path taken through the
graph forms a potential temporal sequence, which describes
a feature evolving over time. Since not all paths are valid
sequences describing evolving features, we evaluate which

paths in the graph describe a likely sequence class (the evo-
lution of a value distribution over time).

Figure 4: An abstract representation of a cluster graph af-

ter edge culling. Each node is a cluster found in clustering

process per time step. Remaining edges represent high prob-

ability that a cluster is the same cluster (feature) over time.

Sequences are paths through the graph that do not reverse

direction in time, which represent a feature evolving over

time.

3.2.1. Edge Probability

To estimate which paths in the graph are valid sequences,
we approximate the probability a valid progression of a clus-
ter (feature) evolving over time. To do this, the edges in the
graph are labeled with estimate probability that a cluster is
the same cluster in the next (or previous) time step with a
slight change. We assume that we are working in a Markov
process, such that a state (in this case a cluster) described in
a sequence of events contains all the necessary information.
Therefore, probability estimate of an edge is dependent only
on the two linked clusters.

Given a cluster a and a set of clusters B = {b0,b1...bn},
we estimate the probability that a is one of the clusters bi

from the set B, with a slight change. To generate this proba-
bility, we use similarity based on the value activity distri-
butions between two clusters, by measuring the time his-

togram [KBH04, DMG∗04] distance between two clusters.
A time histogram is a series of histograms over time, like
a single box in Figure 5, which records the value distribu-
tion of a cluster over time. Our time histogram notation in
our images, where each box is a time histogram, has time on
the x-axis and value on the y-axis. Pixel intensity is the bin
count of (time, value).

Given a time histogram function H(x), it returns the
column-major n∗m 2D histogram matrix for cluster x, where
the rows are value bins and columns are time steps. The time
histogram distance D(a,b) between cluster a to cluster b, is
the sum of the histogram distance calculated on each column
of H(a) and H(b). Equation 1 is the time histogram distance
where d(x,y) is a histogram distance metric on histogram
vectors of length m. Histogram metrics, d(x,y), that we have
tested are EMD (Earth Mover’s Distance), L2 norm, and χ2

histogram distance. There is little difference in the results
between the metrics.

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



J. Woodring & H.-W. Shen / Semi-Automatic Time-Series Transfer Functions via Temporal Clustering and Sequencing

Figure 5: The left image shows a series of clusters over

time, shown as small multiples of time histograms, from the

argon bubble data set. Even though clusters share value

ranges over time, they are separated into two distinct activ-

ity classes. An abstract representation of a time histogram is

shown on the right.

D(a,b) =
n

∑
i=0

d(H(a)[i],H(b)[i]) (1)

From the time histogram distance function, we generate
a probability estimate. We calculate this using Equation 2,
where the P is the probability that cluster a is cluster bi in
the next time step. We calculate it as one over the histogram
distance, normalized by sum of all of the histogram distances
to the clusters in set B. p increases the sharpness of the prob-
ability distribution among choices of a to bi. We have mainly
used p = 2, similar to the 1/d2 model used in many scientific
and engineering methods.

P(a,bi) = 1/D(a,bi)
p/ ∑

∀x∈B

1/D(a,x)p (2)

3.2.2. Edge Culling and Sequence Generation

We could potentially find all of the paths in the graph, but
that would overload the user with choices. Additionally, only
a small number of paths are valid sequences (high probabil-
ity of an evolution of a feature). To reduce the paths to a
small set, we perform edge culling on the graph, removing
edges whose probability is below a certain threshold γ . The
threshold removes edges that possibly couldn’t represent an
evolution of a cluster over time.

When sequences split or merge, an edge will have a lower
probability, because the probability estimation favors contin-
uation. We use the maximum probability that is the between
the forward and backward probability, to account for split-
ting and merging. Secondly, to retain split or merge edges
or edges, γ needs to be low enough to retain those edges.
The rule of thumb for calculating γ is that it is (expected

probability of continuation / maximum splits or merges per
time step). For example, we use γ = .45, which assumes a
split or merge of 2 clusters at most, as many of the continua-
tion edge probabilities, in our experience, are greater than .9
(.45 = .9/2).

After edge culling, we scan the graph for possible starting
and ending clusters. Then, we use a strictly time forward or
backward find-all-paths algorithm between all of the starting
and ending pairs to generate the sequences from the graph.
The generated sequences and graph are shown to the user in
the next section.

4. Visualization

In this section, we describe how to visualize a data set from
the previous processes. We show the sequences, sequence
graph, and clusters that are extracted from the time-varying
data set. Visualization of the clustering and sequencing pro-
cess gives a user the ability to see a summary of his or her
time-varying data. From the collected information in clus-
tering and sequencing, we generate a time-varying transfer
function from a user selected sequence.

4.1. Sequence Visualization

Figure 6: After the data is analyzed, the sequences are vi-

sualized by the user. In this interface, the user can see the

results of the clustering and sequencing process. An abstract

example of the visualization is shown on the bottom.

To visualize the sequencing process, we show the infor-
mation contained in the graph and sequences. An example
visualization is seen in Figure 6. In this interface, the user
can update the edge culling through γ , add or remove edges
manually, and rerun the sequence generation after altering
the edges. The clustering process has to be re-run if the user

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



J. Woodring & H.-W. Shen / Semi-Automatic Time-Series Transfer Functions via Temporal Clustering and Sequencing

wishes to change k or w, which would generate a new graph
and clusters.

In Figure 6, shown at the top left, is the cluster graph. A
node (cluster) is shown as a small time histogram of the data
contained in a cluster. The edges shown in the graph are the
remaining edges after γ culling, colored by probability. At
the bottom left, we show each of the sequences which were
found from traversing the culled graph. Their display format
is similar to the graph. To the right of each sequence, we
show a summary time histogram for each sequence. Con-
fidence statistics are shown for each of the sequences, in
an information box on the right. The confidence metrics we
have used are the minimum edge probability of a sequence,
the average edge probability, and the multiplication of the
edge probabilities. Additionally, through visual inspection,
a user can also make an evaluation of the time histograms
and graph to see if a sequence is valid.

4.2. Time-Varying Transfer Functions

We have previously assumed that in a sequence of clusters
is there is a small shift in value distributions or histograms
over time for a feature. We referred to this as temporal conti-
nuity of clusters. To create a transfer function, we histogram
equalize a color and/or opacity map over time to match the
value distributions (histograms) in a sequence. By updating
the color and/or opacity map to reflect the continuity of value
distributions in a cluster, we achieve visual continuity of a
feature over time.

We can generate dynamic transfer functions, with respect
to color and/or opacity, or a static transfer functions, by
remapping a transfer function map using the CDF (cumu-
lative distribution function) of the histograms in a selected
sequence. For a dynamic transfer function, we use the me-
dian (w.r.t. time) histogram of each cluster over time in a se-
quence. For a static transfer function, we create a single his-
togram by summing the median histograms. The histograms
represent the activity distribution in value space for a feature
over time.

To create a transfer function from sequence data, we use
an initial color and/or opacity map M(v) that maps a value
v to a visual (color and/or opacity) c. The map M is defined
over a value range with some distribution, which could be
the histogram in the first cluster of a sequence. I(p) is the
inverse cumulative distribution function for the value range
that M maps over, which returns the value that cumulative
probability p maps to. C(v) is the CDF of a histogram from a
cluster in a sequence that we wish to remap to, which returns
a cumulative probability given a value v. We can create a new
map N(v) by simple construction in Equation 3. N can be for
a dynamic map, where C would change for every time step
(use the a cluster’s histogram for every time step), or for a
static map, where C is the same for every time step (use a
summed histogram of all the clusters in a sequence).

N(v) = M(I(C(v))) (3)

This histogram equalization method also can be used for
isosurfaces, except it is a forward value mapping, remov-
ing the classification map M. Our difference from other
histogram equalization and quantization methods [TM05,
AFM06] is the clustering and sequencing process that pro-
ceeds it. If we apply the equalization to the global time his-
togram, with no sequence extraction, the result may not be
the same. Specific features (value activity) can be hidden in
the overall histogram, as can be evidenced in the overlapped
histograms of the argon bubble data in Figure 5.

If we use an initial color map that is uniformly distributed,
the first equalized map will redistribute the colors to reflect
the distribution of values in value space. This will apply
more colors in dense value distribution ranges, increasing
the color contrast and fidelity. The difference between uni-
form color map and an equalized color map can be seen in
Figure 7.

Figure 7: Visualization of CCMS temperature data. The left

image uses a uniformly distributed color and opacity map.

The right image uses histogram equalized color and opacity

map based a temporal sequence, focusing in on the sequence

of interest.

4.2.1. Dynamic vs. Static

We have noted a semantic distinction between a static color
map and a dynamic color map. Traditionally, the color to
value mapping has been fixed, such that a particular color
always has the meaning of a particular value. When a color
changes over time in a visualization, this has the meaning of
absolute value change. If we use a dynamic color map, the
color to value map is not static. Color change over time now
indicates a relative value change. A user who is analyzing his
or her data can become confused if they are not aware of this
distinction. While this can be confusing, having a dynamic
color map does have the benefit of increasing color fidelity
by using more colors in a packed value distribution range.
An additional benefit is that dynamic color map subtracts
the mean (average) trend, and only shows the differences.

The opacity map can also be dynamic or static as well,

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



J. Woodring & H.-W. Shen / Semi-Automatic Time-Series Transfer Functions via Temporal Clustering and Sequencing

independent of the color map. Using a dynamic opacity map
is easier to use over a dynamic color map. It allows the visu-
alization to be focused on the current value range of interest,
excluding colors (values) that are not part of a feature. When
using a static opacity map, all values of the color map are
shown, with no distinction on whether the visualized values
are part of the feature.

We show the different combinations of dynamic and static
color and opacity described below and in Figure 8:

• Static Color, Static Opacity : Color change means abso-
lute value change. Context values outside of the current
cluster value range are visible.
Use this when the user just wants one map, and/or wants

absolute value meaning of color.

• Static Color, Dynamic Opacity : Color change means ab-
solute value change. Only current cluster values are visi-
ble.
Use this when the user wants absolute value meaning of

color, and also wants to focus on the current feature over

time.

• Dynamic Color, Static Opacity : Color changes mean rela-
tive value changes, and colors are compressed to the value
range. Context values outside of the current cluster value
range are visible.
Use this when the user wants higher color fidelity, and/or

wants to subtract the mean trend.

• Dynamic Color, Dynamic Opacity : Color changes mean
relative value changes, an colors are compressed to the
value range. Only current cluster values are visible.
Same as above, but this has the added benefit of only

showing values in the current feature over time.

4.2.2. Cluster Masks

There may be a value collision between two clusters in one
time step, like in Figure 5. It is not necessarily true that af-
ter the clustering process the only points that have a value
x at time step t are in one cluster. For example, one clus-
ter of points may have an upward trend, and another cluster
of points may have a downward trend, but they both start at
the same value. This is one way that global time histogram
methods for transfer functions cannot classify temporal ac-
tivity as accurately, because they do not have any knowledge
of local change in value.

When using traditional transfer functions, the map usu-
ally only takes value into consideration. With value collision
in sequences, transfer function maps could overlap in value
space. We can disambiguate between two or more trans-
fer functions that share a value with cluster masks. Cluster
masks are the spatial extent of clusters, recorded as cluster
membership per data point over time. Masks can be used as
alpha volume masks, as in Figure 9. By masking, we cull
data points by position that do not belong to the currently
visualized feature (sequence), that a value to color map can-
not account for. Furthermore, the spatial boundaries between

Figure 8: The earthquake data set with different transfer

functions computed on a temporal sequence. Top row is

static color, bottom row is dynamic color. Left column is

static opacity, right column is dynamic opacity.

Figure 9: The argon bubble data set, visualized with a dy-

namic color/static opacity transfer function. The right image

uses a cluster mask to only show the data points that are ex-

actly part of the sequence.

clusters can also be used for visual enhancement, such as a
gradient filter for lighting and opacity enhancements.

5. Conclusion

Our semi-automatic generation of transfer functions for
time-varying data reduces the majority of guesswork and te-
dium of manually creating a time-series transfer function.
We find features in time-varying data sets corresponding
to similar value activity, and create transfer function maps
based on value distributions shifting over time. During the
process of creating a transfer function, the graph and se-
quence interface can provide additional insight.

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



J. Woodring & H.-W. Shen / Semi-Automatic Time-Series Transfer Functions via Temporal Clustering and Sequencing

For future work, the algorithm could become more auto-
matic by algorithmically estimating k,w, and γ . If we can
integrate spatial filtering and locality into our clustering, se-
quence confidence would be increased through additional in-
formation [WYM]. This may allow us to increase the num-
ber of features (k) in a reliable fashion, by increasing the
feature vector (TAC), without causing temporally discontin-
uous sequences from over-fitting. Multi-scale temporal fil-
tering of time activity [WS09], for detecting long vs. short
temporal trends could also augment the TAC vector. This
may also lead to multi-scale transfer functions that reveal
long vs. short trends. Currently, the majority of the com-
putational time is spent in the clustering process, which is
run on a parallel machine. Clustering runs in tens of min-
utes, while the sequencing and transfer function generation
is done on a single machine, in seconds. Multi-scale spatial
filtering methods would reduce the amount of data that is
processed, and speed up the clustering and the overall pro-
cess.

This work was supported in part by NSF ITR
Grant ACI-0325934, NSF RI Grant CNS-0403342,
NSF Career Award CCF-0346883, and DOE SciDAC
grant DE-FC02-06ER25779. A reference implemen-
tation source code for this work can be downloaded
at http://www.cse.ohio-state.edu/~hwshen/

Research/Gravity/Download.html.

Figure 10: Visualizations using transfer functions generated

via clustering and sequencing.

References

[AFM06] AKIBA H., FOUT N., MA K.-L.: Simultaneous clas-
sification of time-varying volume data based on the time his-
togram. In Eurographics Visualization Symposium (2006), pp. 1–
8.

[BPS] BAJAJ C., PASCUCCI V., SCHIKORE D.: The contour
spectrum. In Proceedings of Visualization ’97.

[DMG∗04] DOLEISCH H., MAYER M., GASSER M., WANKER

R., HAUSER H.: Case study: Visual analysis of complex, time-
dependent simulation results of a diesel exhaust system. In Pro-

ceedings of the 2004 Eurographics/IEE TVCG Symposium on Vi-

sualization (2004), pp. 91–96.

[FMHC07] FANG Z., MÖLLER T., HARMARNEH G., CELLER

A.: Visualization and exploration of spatio-temporal medical im-
age data sets. Proceedings of Graphics Interface 2007.

[HHKP96] HE T., HONG L., KAUFMAN A., PFISTER H.: Gen-
eration of transfer functions with stochastic search techniques. In
Seventh IEEE Visualization 1996 (VIS’96) (1996), p. 227.

[HW79] HARTIGAN J. A., WONG M. A.: Algorithm as 136: A
k-means clustering algorithm. Applied Statistics 28, 1 (1979),
100–108.

[JKM01] JANKUN-KELLY T., MA K.-L.: Study of transfer func-
tion generation for time-varying volume data. In Proceedings of

Volume Graphics 2001 Workshop (2001), pp. 51–65.

[JSW] JI G., SHEN H.-W., WENGER R.: Volume tracking using
higher dimensional isosurfacing. In IEEE Visualization, 2003.

[KBH04] KOSARA R., BENDIX F., HAUSER H.: Timehis-
tograms for large, time-dependent data. In Proceedings of the

2004 Eurographics/IEEE TVCG Symposium on Visualization

(2004), pp. 45–54, 340.

[KD98] KINDLMANN G., DURKIN J.: Semi-automatic genera-
tion of transfer functions for direct volume rendering. In IEEE

Symposium on Volume Visualization, 1998 (Oct. 1998), pp. 79–
86, 170.

[KKH01] KNISS J., KINDLMANN G., HANSEN C.: Interactive
volume rendering using multi-dimensional transfer functions and
direct manipulation widgets. In Visualization, 2001. VIS ’01. Pro-

ceedings (2001), pp. 255–562.

[Lev88] LEVOY M.: Display of surfaces from volume data. IEEE

Computer Graphics and Applications 8, 3 (1988), 29–37.

[LS09] LEE T.-Y., SHEN H.-W.: Visualizing time-varying fea-
tures with tac-based distance fields. In IEEE Pacific Visualization

Symposium 2009 (2009).

[Ma03] MA K.-L.: Visualizing time-varying volume data. Com-

puting in Science and Engineering 5, 2 (2003).

[PHHH05] PETERSCH B., HADWIGER M., HAUSER H.,
HÖNIGMANN D.: Real time computation and temporal coher-
ence of opacity transfer functions for direct volume rendering of
ultrasound data. Computerized Medical Imaging and Graphics

29, 1 (2005), 53–63.

[PVHL03] POST F. H., VROLIJK B., HAUSER H., LARAMEE

R. S.: The state of the art in flow visualization: Feature extraction
and tracking. Computer Graphics Forum 22, 4 (203), 775–792.

[RPS01] REINDERS F., POST F. H., SPOELDER H. J. W.: Visu-
alization of time-dependent data with feature tracking and event
detection. The Visual Computer 17, 1 (2001), 55–71.

[SW97] SILVER D., WANG X.: Tracking and visualizing turbu-
lent 3d features. IEEE Transactions on Visualization and Com-

puter Graphics 3, 2 (June 1997), 129–141.

[TM05] TZENG F.-Y., MA K.-L.: Intelligent feature extraction
and tracking for visualizing large-scale 4d flow simulations. In
SC ’05: Proceedings of the 2005 ACM/IEEE conference on Su-

percomputing (2005), p. 6.

[vWvS99] VAN WIJK J. J., VAN SELOW E. R.: Cluster and cal-
endar based visualization of time series data. In INFOVIS (1999),
pp. 4–9.

[WS09] WOODRING J., SHEN H.-W.: Multiscale time activ-
ity data exploration via temporal clustering visualization spread-
sheet. IEEE Transactions on Visualization and Computer Graph-

ics 15, 1 (Jan.-Feb. 2009), 123–137.

[WYM] WANG C., YU H. Y., MA K.-L.: Importance-driven
time-varying data visualization. IEEE Transactions on Visual-

ization and Computer Graphics (Proceedings Visualization / In-

formation Visualization 2008) 14, 6.

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.


